AgentSkillsCN

mcp-builder

构建高质量 MCP(模型上下文协议)服务器的指南,使 LLM 能够通过精心设计的工具与外部服务交互。在使用 Python (FastMCP) 或 Node/TypeScript (MCP SDK) 构建 MCP 服务器以集成外部 API 或服务时使用。

中文原作
SKILL.md
--- frontmatter
name: mcp-builder
description: 构建高质量 MCP(模型上下文协议)服务器的指南,使 LLM 能够通过精心设计的工具与外部服务交互。在使用 Python (FastMCP) 或 Node/TypeScript (MCP SDK) 构建 MCP 服务器以集成外部 API 或服务时使用。
license: 完整条款见 LICENSE.txt

MCP 服务器开发指南

概述

创建 MCP(模型上下文协议)服务器,使 LLM 能够通过精心设计的工具与外部服务交互。MCP 服务器的质量取决于它能多好地使 LLM 完成实际任务。


流程

🚀 高级工作流程

创建高质量的 MCP 服务器包含四个主要阶段:

阶段一:深入研究与规划

1.1 理解现代 MCP 设计

API 覆盖 vs. 工作流工具: 在全面的 API 端点覆盖与专用工作流工具之间取得平衡。工作流工具对于特定任务可能更方便,而全面覆盖则给予代理灵活组合操作的能力。不同客户端的性能表现各异——某些客户端受益于结合基本工具的代码执行,而另一些则更适合使用高级工作流。当不确定时,优先考虑全面的 API 覆盖。

工具命名与可发现性: 清晰、描述性的工具名称有助于代理快速找到正确的工具。使用一致的前缀(例如 github_create_issuegithub_list_repos)和面向动作的命名。

上下文管理: 代理受益于简洁的工具描述以及过滤/分页结果的能力。设计返回聚焦、相关数据的工具。某些客户端支持代码执行,这可以帮助代理高效地过滤和处理数据。

可操作的错误消息: 错误消息应引导代理找到解决方案,提供具体的建议和下一步操作。

1.2 学习 MCP 协议文档

浏览 MCP 规范:

从站点地图开始查找相关页面:https://modelcontextprotocol.io/sitemap.xml

然后使用 .md 后缀获取特定页面的 markdown 格式(例如 https://modelcontextprotocol.io/specification/draft.md)。

需要查阅的关键页面:

  • 规范概述和架构
  • 传输机制(流式 HTTP、stdio)
  • 工具、资源和提示定义

1.3 学习框架文档

推荐技术栈:

  • 语言:TypeScript(高质量 SDK 支持,在许多执行环境中兼容性良好,如 MCPB。此外 AI 模型擅长生成 TypeScript 代码,得益于其广泛使用、静态类型和良好的 lint 工具)
  • 传输:远程服务器使用流式 HTTP,采用无状态 JSON(相比有状态会话和流式响应,更易于扩展和维护)。本地服务器使用 stdio。

加载框架文档:

TypeScript(推荐):

  • TypeScript SDK:使用 WebFetch 加载 https://raw.githubusercontent.com/modelcontextprotocol/typescript-sdk/main/README.md
  • ⚡ TypeScript 指南 - TypeScript 模式和示例

Python:

  • Python SDK:使用 WebFetch 加载 https://raw.githubusercontent.com/modelcontextprotocol/python-sdk/main/README.md
  • 🐍 Python 指南 - Python 模式和示例

1.4 规划实现

理解 API: 查阅服务的 API 文档以识别关键端点、认证要求和数据模型。根据需要使用网络搜索和 WebFetch。

工具选择: 优先考虑全面的 API 覆盖。列出要实现的端点,从最常用的操作开始。


阶段二:实现

2.1 设置项目结构

参阅特定语言指南了解项目设置:

2.2 实现核心基础设施

创建共享工具:

  • 带认证的 API 客户端
  • 错误处理辅助函数
  • 响应格式化(JSON/Markdown)
  • 分页支持

2.3 实现工具

对于每个工具:

输入模式:

  • 使用 Zod(TypeScript)或 Pydantic(Python)
  • 包含约束和清晰的描述
  • 在字段描述中添加示例

输出模式:

  • 尽可能为结构化数据定义 outputSchema
  • 在工具响应中使用 structuredContent(TypeScript SDK 特性)
  • 帮助客户端理解和处理工具输出

工具描述:

  • 功能的简洁摘要
  • 参数描述
  • 返回类型模式

实现:

  • 对 I/O 操作使用 async/await
  • 使用可操作的消息进行适当的错误处理
  • 在适用的地方支持分页
  • 使用现代 SDK 时同时返回文本内容和结构化数据

注解:

  • readOnlyHint:true/false
  • destructiveHint:true/false
  • idempotentHint:true/false
  • openWorldHint:true/false

阶段三:审查与测试

3.1 代码质量

审查以下方面:

  • 无重复代码(DRY 原则)
  • 一致的错误处理
  • 完整的类型覆盖
  • 清晰的工具描述

3.2 构建与测试

TypeScript:

  • 运行 npm run build 验证编译
  • 使用 MCP Inspector 测试:npx @modelcontextprotocol/inspector

Python:

  • 验证语法:python -m py_compile your_server.py
  • 使用 MCP Inspector 测试

参阅特定语言指南了解详细的测试方法和质量检查清单。


阶段四:创建评估

实现 MCP 服务器后,创建全面的评估来测试其有效性。

加载 ✅ 评估指南 获取完整的评估指南。

4.1 理解评估目的

使用评估来测试 LLM 能否有效地使用您的 MCP 服务器回答真实、复杂的问题。

4.2 创建 10 个评估问题

要创建有效的评估,请遵循评估指南中概述的流程:

  1. 工具检查:列出可用工具并了解其功能
  2. 内容探索:使用只读操作探索可用数据
  3. 问题生成:创建 10 个复杂、真实的问题
  4. 答案验证:自己解答每个问题以验证答案

4.3 评估要求

确保每个问题:

  • 独立:不依赖于其他问题
  • 只读:只需要非破坏性操作
  • 复杂:需要多次工具调用和深度探索
  • 真实:基于人类实际关心的用例
  • 可验证:单一、明确的答案,可通过字符串比较验证
  • 稳定:答案不会随时间改变

4.4 输出格式

创建具有以下结构的 XML 文件:

xml
<evaluation>
  <qa_pair>
    <question>查找关于以动物代号命名的 AI 模型发布的讨论。有一个模型需要使用 ASL-X 格式的特定安全级别。以一种斑点野猫命名的模型被确定为什么数字 X?</question>
    <answer>3</answer>
  </qa_pair>
<!-- 更多 qa_pairs... -->
</evaluation>

参考文件

📚 文档库

在开发过程中根据需要加载这些资源:

核心 MCP 文档(首先加载)

  • MCP 协议:从 https://modelcontextprotocol.io/sitemap.xml 的站点地图开始,然后使用 .md 后缀获取特定页面
  • 📋 MCP 最佳实践 - 通用 MCP 指南,包括:
    • 服务器和工具命名约定
    • 响应格式指南(JSON vs Markdown)
    • 分页最佳实践
    • 传输选择(流式 HTTP vs stdio)
    • 安全和错误处理标准

SDK 文档(在阶段 1/2 期间加载)

  • Python SDK:从 https://raw.githubusercontent.com/modelcontextprotocol/python-sdk/main/README.md 获取
  • TypeScript SDK:从 https://raw.githubusercontent.com/modelcontextprotocol/typescript-sdk/main/README.md 获取

特定语言实现指南(在阶段 2 期间加载)

  • 🐍 Python 实现指南 - 完整的 Python/FastMCP 指南,包括:

    • 服务器初始化模式
    • Pydantic 模型示例
    • 使用 @mcp.tool 注册工具
    • 完整的工作示例
    • 质量检查清单
  • ⚡ TypeScript 实现指南 - 完整的 TypeScript 指南,包括:

    • 项目结构
    • Zod 模式模式
    • 使用 server.registerTool 注册工具
    • 完整的工作示例
    • 质量检查清单

评估指南(在阶段 4 期间加载)

  • ✅ 评估指南 - 完整的评估创建指南,包括:
    • 问题创建指南
    • 答案验证策略
    • XML 格式规范
    • 示例问题和答案
    • 使用提供的脚本运行评估