AgentSkillsCN

usd-reserve-loss-gold-revaluation

在「美元/某貨幣失去儲備地位、黃金成為唯一錨」的假設下,用央行貨幣負債 ÷ 黃金儲備,推演「資產負債表可承受的隱含金價」,並輸出各國/各貨幣的槓桿程度、缺口與排名。

中文原作
SKILL.md
--- frontmatter
name: usd-reserve-loss-gold-revaluation
description: 在「美元/某貨幣失去儲備地位、黃金成為唯一錨」的假設下,用央行貨幣負債 ÷ 黃金儲備,推演「資產負債表可承受的隱含金價」,並輸出各國/各貨幣的槓桿程度、缺口與排名。

<essential_principles>

<principle name="gold_anchor_hypothesis"> **黃金錨定假說**

本模型基於極端情境假設:若法定貨幣體系瓦解、黃金成為唯一錨定資產,則:

  • 隱含金價 = 貨幣負債 ÷ 黃金儲備
  • 這不是「預測」,而是「壓力測試」:資產負債表要撐得住需要多高的金價

典型論述來源:VanEck「$39k gold」分析(M0 + FX turnover 加權) </principle>

<principle name="two_aggregates"> **兩種貨幣口徑差異**
口徑定義隱含金價解讀
M0 (Monetary Base)央行直接負債(通貨 + 準備金)~$39k央行資產負債表壓力
M2 (Broad Money)含銀行體系信用擴張~$184k全體信用體系壓力

關鍵洞察:兩者差距反映「信用乘數」的槓桿效應。 </principle>

<principle name="weighting_logic"> **加權方法的直覺**
方法數據來源直覺
fx_turnoverBIS 三年調查外匯交易份額 ≈ 國際結算/儲備使用強度
reserve_shareIMF COFER官方外匯儲備幣別佔比
equal-不考慮貨幣重要性差異
custom用戶自訂可配合特定情境分析

加權的直覺:份額越高的貨幣,在「重新錨定」時需吸收的負債壓力越大。 </principle>

<principle name="backing_ratio"> **黃金支撐率 (Backing Ratio)**
code
backing_ratio = (gold_oz × gold_spot) / money_base

解讀:

  • backing_ratio ≈ 3% → 黃金僅支撐 3% 的貨幣負債(高槓桿)
  • backing_ratio ≈ 60% → 黃金接近完全支撐(低槓桿)

貼文中「日本黃金只支撐約 3% 的 M0」即此概念。 </principle>

<principle name="data_access"> **資料取得方式**

本 skill 使用公開數據

  • 黃金儲備:World Gold Council / IMF IFS(tonnes)
  • 貨幣量:各國央行 / FRED / IMF IFS(M0/M2)
  • FX Turnover:BIS Triennial Survey(每三年更新)
  • 金價:Yahoo Finance / FRED(XAU/USD)

腳本位於 scripts/ 目錄,可直接執行。 </principle>

</essential_principles>

<objective> 實作「美元失去儲備地位下的黃金重估」壓力測試模型:
  1. 數據整合:抓取各國 M0/M2、黃金儲備、匯率、FX turnover 權重
  2. 計算隱含金價:未加權與加權版本
  3. 計算黃金支撐率:衡量各國槓桿程度
  4. 計算缺口:需要再買多少黃金才能達到目標支撐率
  5. 排名輸出:誰最槓桿、誰最穩健

輸出:隱含金價、支撐率排名、缺口分析、敘事洞察。 </objective>

<quick_start>

最快的方式:執行預設情境分析

bash
cd skills/usd-reserve-loss-gold-revaluation
pip install pandas numpy requests yfinance  # 首次使用
python scripts/gold_revaluation.py --quick

輸出範例:

json
{
  "headline": {
    "implied_gold_price_m0_weighted": 39210.0,
    "implied_gold_price_m2_weighted": 184500.0,
    "interpretation": "壓力測試數字,非價格預測"
  },
  "ranking": [
    {"entity": "JPY", "backing_ratio": 0.03, "lever_multiple": 41.0},
    {"entity": "USD", "backing_ratio": 0.08, "lever_multiple": 12.5},
    {"entity": "ZAR", "backing_ratio": 0.60, "lever_multiple": 0.16}
  ]
}

完整情境分析

bash
python scripts/gold_revaluation.py \
  --date 2026-01-07 \
  --entities USD,CNY,JPY,EUR,GBP \
  --aggregate M0 \
  --weighting fx_turnover \
  --output result.json

</quick_start>

<intake> 需要進行什麼操作?
  1. 快速計算 - 使用預設參數計算主要貨幣的隱含金價
  2. 完整分析 - 自訂參數進行情境分析(可選擇口徑、權重、實體)
  3. 比較分析 - 同時比較 M0 vs M2、不同加權方法的差異
  4. 監控模式 - 追蹤黃金支撐率的變化趨勢
  5. 方法論學習 - 了解計算邏輯與數據來源
  6. 視覺化圖表 - 生成分析結果的視覺化圖表

請選擇或直接提供分析參數。 </intake>

<routing> | Response | Action | |---------------------------------|-----------------------------------------------| | 1, "快速", "quick", "計算" | 執行 `python scripts/gold_revaluation.py --quick` | | 2, "完整", "full", "分析" | 閱讀 `workflows/analyze.md` 並執行 | | 3, "比較", "compare", "對比" | 閱讀 `workflows/compare.md` 並執行 | | 4, "監控", "monitor", "追蹤" | 閱讀 `workflows/monitor.md` 並執行 | | 5, "學習", "方法論", "why" | 閱讀 `references/methodology.md` | | 6, "圖表", "畫圖", "視覺化" | 執行 `python scripts/visualize_revaluation.py` | | 提供參數 (如實體清單) | 閱讀 `workflows/analyze.md` 並使用參數執行 |

路由後,閱讀對應文件並執行。 </routing>

<directory_structure>

code
usd-reserve-loss-gold-revaluation/
├── SKILL.md                           # 本文件(路由器)
├── skill.yaml                         # 前端展示元數據
├── manifest.json                      # 技能元數據
├── workflows/
│   ├── analyze.md                     # 完整情境分析工作流
│   ├── compare.md                     # M0/M2 比較分析工作流
│   └── monitor.md                     # 持續監控工作流
├── references/
│   ├── data-sources.md                # 數據來源與獲取方式
│   ├── methodology.md                 # 方法論與計算邏輯
│   └── input-schema.md                # 完整輸入參數定義
├── templates/
│   ├── output-json.md                 # JSON 輸出模板
│   └── output-markdown.md             # Markdown 報告模板
└── scripts/
    ├── gold_revaluation.py            # 主計算腳本
    └── visualize_revaluation.py       # 視覺化腳本

</directory_structure>

<reference_index>

方法論: references/methodology.md

  • 黃金錨定假說解析
  • 隱含金價計算公式
  • 支撐率與槓桿解讀

資料來源: references/data-sources.md

  • 黃金儲備數據來源
  • 貨幣量 M0/M2 數據來源
  • BIS FX Turnover 數據
  • 匯率與金價來源

輸入參數: references/input-schema.md

  • 完整參數定義
  • 預設值與建議範圍

</reference_index>

<workflows_index>

WorkflowPurpose使用時機
analyze.md完整情境分析需要自訂參數進行壓力測試
compare.mdM0/M2 比較分析比較不同口徑的隱含金價差異
monitor.md持續監控追蹤支撐率變化趨勢
</workflows_index>

<templates_index>

TemplatePurpose
output-json.mdJSON 輸出結構定義
output-markdown.mdMarkdown 報告模板
</templates_index>

<scripts_index>

ScriptCommandPurpose
gold_revaluation.py--quick快速計算主要貨幣
gold_revaluation.py--entities USD,CNY --agg M0自訂實體與口徑
gold_revaluation.py--compare-aggregatesM0 vs M2 比較
visualize_revaluation.py--mode usd美元單一視覺化圖表
visualize_revaluation.py--mode multi多貨幣比較視覺化圖表
visualize_revaluation.py--mode all --output-dir DIR生成所有圖表至指定目錄
</scripts_index>

<input_schema_summary>

核心參數

參數類型預設值說明
scenario_datestringtoday情境估算基準日期
entitiesarray主要貨幣分析對象(國家/貨幣代碼)
monetary_aggregatestringM0貨幣口徑(M0/M2/MB/M1/M3)
weighting_methodstringfx_turnover加權方式
fx_basestringUSD計價幣別基準

進階參數

參數類型預設值說明
liability_scopestringbroad_money負債口徑
gold_reserve_unitstringtroy_oz黃金單位(oz/tonnes)
gold_price_spotfloatauto基準日金價(可自動抓取)
fx_ratesobjectauto匯率(可自動抓取)

完整參數定義見 references/input-schema.md

</input_schema_summary>

<output_schema_summary>

json
{
  "skill": "usd-reserve-loss-gold-revaluation",
  "scenario_date": "2026-01-07",
  "assumptions": {
    "monetary_aggregate": "M0",
    "weighting_method": "fx_turnover",
    "fx_base": "USD",
    "gold_spot_usd_per_oz": 2050.0
  },
  "headline": {
    "implied_gold_price_weighted_usd_per_oz": 39210.0,
    "interpretation": "資產負債表壓力測算(非價格預測)"
  },
  "table": [...],
  "insights": [...]
}

完整輸出結構見 templates/output-json.md。 </output_schema_summary>

<success_criteria> 執行成功時應產出:

  • 隱含金價(未加權與加權版本)
  • 各實體的黃金支撐率(backing_ratio)
  • 槓桿倍數排名(lever_multiple_vs_spot)
  • 黃金缺口分析(additional_gold_oz_needed)
  • 敘事洞察(M0 vs M2 差異、槓桿解讀)
  • 結果輸出為指定格式(JSON 或 Markdown)
  • 視覺化圖表(可選,包含金價比較、支撐率、信用乘數等 6 個面板) </success_criteria>